

Resuelve cada problema.

- 1) El fin de semana Flor pasó $3\frac{1}{8}$ en total de horas estudiando. Si ella pasó $2\frac{1}{8}$ horas estudiando el sábado, ¿cuánto tiempo estudió el domingo?
- Un arquitecto construyó una carretera de $9\frac{1}{7}$ millas de largo. La siguiente carretera que construyó era $9\frac{1}{7}$ millas de largo. ¿Cuál es la longitud combinada de los dos caminos?
- Durante una tormenta de nieve nevó $11^{3}/_{10}$ pulgadas. Después de una semana el sol había derretido $8^{7}/_{10}$ pulgadas de nieve. ¿Cuántas pulgadas de nieve quedan?
- 4) En la playa, Fernando construye un castillo de arena que tiene $3\frac{5}{7}$ metros de altura. Si agregó una bandera que tenía $3\frac{6}{7}$ pies de altura, ¿cuál es la altura total de su creación?
- Para Halloween, Wendy recibió $10^{5}/_{9}$ libras de dulces. Después de una semana su familia había comido $2^{1}/_{9}$ libras. ¿Cuántas libras de dulces le quedan?
- Para Halloween, Laura recibió $2\frac{6}{7}$ libras de dulces en la primera hora y otras $2\frac{2}{7}$ libras la segunda hora. ¿Cuántos dulces recogió en total?
- 7) Uriel trotó $4\frac{2}{4}$ kilometros el lunes y el martes $2\frac{2}{4}$ kilometros. ¿Cuál es la diferencia entre estas dos distancias?
- 8) Una barra de chocolate de tamaño normal tenía $9\frac{3}{5}$ pulgadas de largo. Si la barra tamaño grande era $2\frac{4}{5}$ pulgadas más larga, ¿cuál es la longitud de la barra grande?
- 9) Cesar trazó una línea que tenía $3\frac{1}{4}$ pulgadas de largo. Si trazó una segunda línea que tenía escasos $2\frac{2}{4}$ centímetros de largo, ¿cuál es la diferencia entre la longitud de las dos líneas?
- 10) Leonardo trazó una línea que tenía a escasos $5\frac{2}{3}$ centímetros de largo. Si trazó una segunda línea que era $8\frac{2}{3}$ pulgadas más larga, ¿cuál es la longitud de la segunda línea?

Respuestas

- 2. _____
- 3. _____
- 1. _____
- 5. _____
- 6. _____
- 7. _____
- 8. _____
- 9. _____
- 10. _____

Resuelve cada problema.

- El fin de semana Flor pasó $3\frac{1}{8}$ en total de horas estudiando. Si ella pasó $2\frac{1}{8}$ horas estudiando el sábado, ¿cuánto tiempo estudió el domingo?
- 2) Un arquitecto construyó una carretera de $9\frac{1}{7}$ millas de largo. La siguiente carretera que construyó era $9\frac{1}{7}$ millas de largo. ¿Cuál es la longitud combinada de los dos caminos?
- Durante una tormenta de nieve nevó $11^{3}/_{10}$ pulgadas. Después de una semana el sol había derretido $8^{7}/_{10}$ pulgadas de nieve. ¿Cuántas pulgadas de nieve quedan?
- 4) En la playa, Fernando construye un castillo de arena que tiene $3\frac{5}{7}$ metros de altura. Si agregó una bandera que tenía $3\frac{6}{7}$ pies de altura, ¿cuál es la altura total de su creación?
- Para Halloween, Wendy recibió $10^{5}/_{9}$ libras de dulces. Después de una semana su familia había comido $2^{1}/_{9}$ libras. ¿Cuántas libras de dulces le quedan?
- 6) Para Halloween, Laura recibió $2^6/_7$ libras de dulces en la primera hora y otras $2^2/_7$ libras la segunda hora. ¿Cuántos dulces recogió en total?
- 7) Uriel trotó $4\frac{2}{4}$ kilometros el lunes y el martes $2\frac{2}{4}$ kilometros. ¿Cuál es la diferencia entre estas dos distancias?
- Una barra de chocolate de tamaño normal tenía $9\frac{3}{5}$ pulgadas de largo. Si la barra tamaño grande era $2\frac{4}{5}$ pulgadas más larga, ¿cuál es la longitud de la barra grande?
- 9) Cesar trazó una línea que tenía $3\frac{1}{4}$ pulgadas de largo. Si trazó una segunda línea que tenía escasos $2\frac{2}{4}$ centímetros de largo, ¿cuál es la diferencia entre la longitud de las dos líneas?
- Leonardo trazó una línea que tenía a escasos $5\frac{2}{3}$ centímetros de largo. Si trazó una segunda línea que era $8\frac{2}{3}$ pulgadas más larga, ¿cuál es la longitud de la segunda línea?

Respuestas

$$\frac{8}{1}$$
 = 1

$$_{2}$$
 $\frac{^{128}}{_{7}} = \frac{^{128}}{_{7}}$

$$_{3.}$$
 $^{26}/_{10} = ^{13}/_{5}$

4.
$$\frac{53}{7} = \frac{53}{7}$$

$$\frac{76}{9} = \frac{76}{9}$$

$$\frac{36}{7} = \frac{36}{7}$$

7.
$$\frac{8}{4} = \frac{2}{1}$$

$$\frac{62}{5} = \frac{62}{5}$$

$$\frac{3}{4} = \frac{3}{4}$$

$$\frac{43}{10}$$
. $\frac{43}{3} = \frac{43}{3}$

Resuelve cada problema.

- 1) El fin de semana Flor pasó $3\frac{1}{8}$ en total de horas estudiando. Si ella pasó $2\frac{1}{8}$ horas estudiando el sábado, ¿cuánto tiempo estudió el domingo? (LCM = 8)
- 2) Un arquitecto construyó una carretera de $9\frac{1}{7}$ millas de largo. La siguiente carretera que construyó era $9\frac{1}{7}$ millas de largo. ¿Cuál es la longitud combinada de los dos caminos? (LCM = 7)
- 3) Durante una tormenta de nieve nevó $11^3/_{10}$ pulgadas. Después de una semana el sol había derretido $8^7/_{10}$ pulgadas de nieve. ¿Cuántas pulgadas de nieve quedan? (LCM = 10)
- 4) En la playa, Fernando construye un castillo de arena que tiene $3\frac{5}{7}$ metros de altura. Si agregó una bandera que tenía $3\frac{6}{7}$ pies de altura, ¿cuál es la altura total de su creación? (LCM = 7)
- Para Halloween, Wendy recibió $10^{5}/_{9}$ libras de dulces. Después de una semana su familia había comido $2^{1}/_{9}$ libras. ¿Cuántas libras de dulces le quedan? (LCM = 9)
- 6) Para Halloween, Laura recibió $2^6/_7$ libras de dulces en la primera hora y otras $2^2/_7$ libras la segunda hora. ¿Cuántos dulces recogió en total? (LCM = 7)
- 7) Uriel trotó $4\frac{2}{4}$ kilometros el lunes y el martes $2\frac{2}{4}$ kilometros. ¿Cuál es la diferencia entre estas dos distancias? (LCM = 4)
- 8) Una barra de chocolate de tamaño normal tenía $9^3/_5$ pulgadas de largo. Si la barra tamaño grande era $2^4/_5$ pulgadas más larga, ¿cuál es la longitud de la barra grande? (LCM = 5)
- 9) Cesar trazó una línea que tenía $3\frac{1}{4}$ pulgadas de largo. Si trazó una segunda línea que tenía escasos $2\frac{2}{4}$ centímetros de largo, ¿cuál es la diferencia entre la longitud de las dos líneas? (LCM = 4)
- 10) Leonardo trazó una línea que tenía a escasos $5^2/_3$ centímetros de largo. Si trazó una segunda línea que era $8^2/_3$ pulgadas más larga, ¿cuál es la longitud de la segunda línea? (LCM = 3)

Respuestas

- 1. _____
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6. _____
- 7. _____
- 8.
- 9.
- 10. ____